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Accuracy of measuring the nematic order from intensity scatter: A simulation study
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The determination of the nematic order param&and the orientational distribution functig@DF) from
scattering data involve severe approximations. The validity of these are studied here using Monte-Carlo
simulations of hard spherocylinders with an aspect ratio of 15 for varying densities in the isotropic and nematic
phase. The “exact” ODF of the rods, the “exact” valuefand the intensity scattdid) are determined
directly in simulation. In addition, we determine the ODF &dffom the simulated intensity scatter which
includes spatial and orientational correlations of the particles. We investigate whether correlations present in
the interparticle scatter influences the determination of the single particle orientational distribution function by
comparing the results obtained from scattering with the “exact” results measured directly in our simulations.
We find that the nematic order parameter determined from the intensity scatter underestimates the actual value
by 2—9%. We also find that the values®&and the ODF are insensitive to the absolute value of the scattering
vector for 1.27<|g|D < 27 which agrees well with the assumption proposed by Leadbettet (dpat) along
the equatorial arc is independent|gf. We also observe that the best fit of the “exact” ODF is given by the
Maier-Saupe distribution when nematic director fluctuations are ignored, while the Gaussian distributions
provides the best fit when these fluctuations are included.
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Liquids consisting of anisotropic molecules exhibit a 0

number of liquid-crystalline phases, that are intermediate bewhere P, is the second Legendre polynomial. The orienta-
tween the well-ordered crystalline solid and the isotropictional distribution function can be determined experimentally
fluid phase[see Fig. 1a)]. The simplest liquid-crystal phase by various methods; one of them is based on diffraction ex-
is the so-called nematic phase, in which the particles exhibiperiments, which measures the Fourier transform of a two-
long-range orientational order but no translational ofdee  body correlation function. It is interesting to investigate how
Fig. 1(b)]. Extensive theoretical and simulation studies are2 single-particle distribution can be obtained from measure-
performed on hard-rod fluids, which serve as a good modehents of the two-body correlations. If we considerdenti-

for rodlike colloidal particles like the inorganic boehmite cal particles with orientations given by the unit vectbis,
rods[1] or the biological TMV andd virus particleg2]. The ~ @ndp(r;w) describes the interngklectron density of each
phase behavior of colloidal hard rods starts with the semindndividual particle, then the scattered intensity of the total
work of Onsager, who showed that infinitely thin hard rodsSyStem is given by

exhibit an entropy-driven isotropic-nematic phase transition N N

at sufficiently high densitieg3]. Subsequently, extensive lg={ > > deFde(F—ﬁ;&)i)p(F—Fj;&)j)

computer simulation studies showed that also finite hard rods i=1j=1
show a nematic phadd—7|], a smectic phaspi—6,9 and a
columnar phasg5]. More recently, the phase diagram of xexdiq - (F-=n)]
hard rods is determined as a function of the aspect ratio and
density of the rod$9]. N N
The focus of this paper is, however, not on the phase =\ 2 X exdid - (7, — 7)]G; @) -G @) ],
behavior as many previous studies, but on the structure of the i=1 j=1
fluid, in particular, the single particle distribution and two- 2)

body distribution functions. The nematic phase is often char-

acterized by the orientational distribution functig®@DF)  With 9(q; ay)=J[drp(r; w;)exdiq-r], the Fourier transform of
f(6), which is a single-particle distribution function and de- the (electron density distributiorp(r’; @) of particlei. Note
scribes the distribution of orientations of the particles about dhatp(r'; ;) depends on the orientation of particléhe total
preferred direction, i.e., director. The angle between the longcattered intensity can be split into a pgftj) that depends
molecular axis and the director is denoted by [0,7/2]. on a single-particle distribution function and a second part
This function plays a key role in understanding the propertieS(q) that includes the spatial and orientational correlations,
of nematic phases and many theoretical investigations rel -

on the epriF():it functional forn{ of it. The nematicgorder pa- ’ (@) =NF(@S(9). )
rameterS of a system is quantified by The intraparticle scatter or form facté¥q) is given by
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form factor, hence, the structure factor includes spatial and
orientational correlations. In the isotropic and nematic phase,
it is often assumed tha®d) —1 at a high angle and the
intensity depends only on the form factor, i.€q)=F(q). If

the intensity can be measured at a high angle, the orienta-
tional distribution function can be obtained directly from the
intensity. At low angle, i.e.|g|D <2, the scattering inten-
sity depends oi$(qg) which includes angular and spatial cor-
relations between neighboring rods. In our simulations, we
observe thaiS(g) # 1 for |G|D<2# and it is interesting to
investigate the validity and consequences of the assumption
1(§) =F(g) that is often employed experimentally in the de-
termination ofS and the ODF from intensity scatter. Lead-
better[11,12 showed that the intensity distribution along the
equatorial arc, thus at fixdd], can be related to the ODF of
the sample. The integral equation relating these two quanti-
ties was inverted by Deuts¢th3]. However, using scattering
data that includes experimental errors, a numerical inversion
of the integral equation is very inaccurate. Therefore, one
often assumes an analytical form of the ODF with some fit-
ting parameters which are chosen such that it provides the
best fit of the measured intensity distributigh4—16. The
resulting ODF and the nematic order parameter derived from
the ODF may depend sensitively on the precise trial function
of the ODF. The validity of these approaches to measure the
nematic order and ODF in scattering experiments was stud-
ied by Purdyet al. [16] by comparing the nematic order
parameter obtained from low angle scattering experiments
(which include spatial and orientational correlatipmgth

high angle scattering experimentwhich depends only on
the single-particle ODf- However, both approaches to ob-
tain the nematic order parameter from low and high angle
scattering involve approximations and are based on trial
functions.

In this paper we test the validity of these approaches by
determining the “exact” orientational distribution function of
the rods, the “exact” nematic order parameter, and the inten-
sity scatter directly in simulation. We compare the orienta-
tional distribution function and nematic order parameter ob-
tained from the simulated intensity scatter using several trial
functions with the “exact” results measured directly in our

F(@) = (|9(d; @), (4)  simulations.
and the angular brackets denote an average over all the pay- Th_e p?p_er IS o_rgz;nlze?”as follows: In ﬁec. . V}'e desgrlt;]e
ticles with their orientations given by the unit vectdis}. the Si'm.u ations, cljn ec. Swe l{)/resent the results, and the
The interparticle scatter or structure factor te®d) reads conclusions are drawn In Sec. V.

FIG. 1. Snapshot of a fluid of hard spherocylinders for packing
fraction. (a) »=0.1723(isotropic phasg and(b) 7=0.2338(nem-
atic phasg

[10] as
N Il. SIMULATIONS
Sg=1+ L<2 exdiq - (f; = 1) ]9(q; @) 9(= (j;&;j)> : Extensive simulation studies are performed to determine
NF(3) \ iz the phase behavior of fluids consisting of hard spherocylin-

(5) ders[4-6,8,9. The focus of this paper is, however, not on
the phase behavior, but on the structure of the fluid, in par-
The structure factor depends on the positions of the rods angtular, the single-particle distribution and two-body distribu-
their relative orientations. For spherical symmetric particlestion functions. The “exact” orientational distribution function
the (electron density distributionp(’; @) is independent of  of the rods, the “exact’” nematic order parameter, and the
the orientation of the particle, antl(q; w;)=9(q;®;). The  intensity scatter are determined directly in simulation. We
structure factor is then decoupled from the form factor. How-study a system of hard spherocylinders in a cubic box with
ever, for anisotropic density distributions9(G;@;)  periodic boundary conditions. Each rod consists of a cylin-
# 9(q; ;) and the structure factor is not decoupled from thedrical part with diameteb and lengthL=15D and of spheri-
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cal caps at both ends with diameter We present Monte- eterD as the contribution from the caps is negligible for the
Carlo simulations in the canonical ensemble, so we fix thayiven length-to-diameter ratio,

number of particles aN=1000, and the volum#& of the

system. We perform simulations at varying packing fractions Jl(%Qr)

»=m(D3/6+D?L/4)N/V in the isotropic and nematic phase. 8@ ~ ol E @
In Fig. 1, we present snapshots of the isotropic and nematic 9:@) = o 2qZ D '
phase at packing fractiong=0.1723 and 0.2338, respec- Eqr

tively. The packing fractions of the coexisting isotropic and
nematic phases are predicted to Be=0.1777 andzy  where jo(x) is the spherical Bessel function of the zeroth
=0.2058, while the packing fraction of the nematic-smecticorder, andJ;(x) is the cylindrical Bessel function of the first
transition is at abous,,=0.4438[9]. order. Note that in Eq(7) the polar axis of the coordinate
The simulations are started from an initial condition in system is defined alon@, which can easily be transformed
which the orientations of the rods are randomly distributed into the coordinate system where the polar axis coincides with
a cone with G< §<0.157, whered is the angle between the the direction of scattering vectaj. For infinitely thin rods,
z-axis and the orientation of the rod. The deviations of thethe Fourier transform is defined LGy(x) only andJ;(x)/x
nematic director from the initial direction, which is along the allows for a finite diameter of the rods. The averaged square
z-axis, are often assumed to be snjalf]. However, we find  (|9(q; @)% of this property is the formfactoF(g) of the
that during our simulations the director fluctuations have &ystem that contains information about the shape, the inner
significant impact on the value of the order parameter andtrycture of the molecule, and the ODF. The structure factor
moreover on the best fitting distribution of the ODF. We g(g) of the system contains information about the positional
therefore determine for each configuration the actual nematigq orientational correlations between the scattering par-
director and'we determine the ODF and the nem{;\tic ordeficles. Equation3) with (4) and(5), however, is not conve-
parameter with respect to the present director. In this way Wgjent for sampling the scattered intensity in simulations as it
ignore the fluctuations of the nematic director, which can b&gntains a double summation, and the diﬁereﬁee"j in the
achieved experimentally by switching on a magnetic fieldexponent requires paying attention to the periodic boundary

that fixes the nematic director of the sample. The currentongitions. Using simple algebra the scattered intensity can
nematic director and the nematic order parameter are detefy \written as

mined from the standard>33 nematic order parameter ten-

defined agl N 2 [ X 2

sordeinedagid |<d>:<2cos(d-ﬁw(a;a)i>> +(Esin<a-ﬂ)ﬁ<d;a»i)) ,
Q _ 1 3u|au| _ 5aﬁ (6) i=1 i=1

ap Ni:l 2 ! (8)

whereu!, is the a-component of the unit orientation vector of which does not contain double summation and allows for
twice the higher resolution as the smallest nonzggg, is

articlei, and 6,5 is the Kronecker delta. The nematic order ™" L -
P A iven by gnin=27/L; due to periodic boundary conditions

parameter is given by the largest eigenvalue of this tenso? - . .

and the corresponding eigenvector is the nematic director oq_ompared to Eq(_3) Whereqmi“_4W/Li with L; the_d|men-

the sample. sion c_)f the box in thea-th direction[due to the difference
We check for equilibration by monitoring the nematic or- i ~"i In EA- (9)].

der parameter of the system. The maximum allowed values

for displacement and rotational moves are chosen such that

the product of the acceptance ratio and maximum displace- lll. RESULTS AND DISCUSSION

ment is maximum which corresponds with an acceptance As we wish to investigate whether correlations present in
ratio of about 25—-30%. When equilibrium is reached, wethe interparticle scatter influences the determination of the
perform a production run of 1:810° sweeps(one displace- ODF and S from intensity scatter, we first determine the
ment attempt per particlewhile sampling is performed once «exact” value ofS and the “exact” ODF of the rods directly
every sweep. The quantities that are sampled are the nematfi¢ simulation. We perform simulations at varying packing
order parameter, the orientation distribution functifi®),  fractionsy in the isotropic and nematic phase. We meaSire
which is proportional to the probability to find a rod with an from Eq. (6), the ODFf(#6), and the scattered intensitgg).
angle within[ 4, 6+dd] relative to the nematic director, and The |atter two are both measured from simulatiginsvhere
the scattered intensityq) given by Eq.(3). It is convenient  the zaxis is taken to be the fixed nematic director, i.e., nem-
to write the reciprocal vector in cylindrical coordinatgs  atic director fluctuations are included afi) where for each
=(qr,9,.0y)- If the system possesses uniaxial symmetry relaconfiguration the present nematic director is calculated such
tive to the nematic director lying along tlzaxis, the scat- that nematic director fluctuations are disregarded. The latter
tered intensity depends only onandz coordinates, and is can be achieved experimentally by applying a magnetic field
independent ofp. that fixes the nematic director of the sample. We present
The Fourier transform of theelectron density of a results for the case that nematic director fluctuations are dis-
spherocylinderd(q; ) can be approximated by the Fourier regarded, unless stated differently. Table | shSas a func-
transform of only the cylindrical part of length and diam-  tion of # for the statepoints we considered in this study. Note
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TABLE |. The nematic order paramet& of a fluid of hard ] -
spherocylinders for different packing fractiong determined di- 20+ gﬁgj ""-._
rectly in simulationg“exact”), determined from a fit of the “exact” %
orientational distribution function, and determined from a fit of the 154 AZ:OO
scattering intensity (). A
£ 10 AAZZ%O o,

7 0.1846 0.1969 0.2092 0.2215 0.2338 %
“Exact” 0.627 0.747 0.799 0.825 0.861 5- w2
Maier-Saupe fit of ODF 0.631 0.754 0.805 0.824 0.866
Onsager fit of ODF 0.674 0.777 0.819 0.835 0.872 %.00 -,
Gaussian fit of ODF 0.683 0.781 0.822 0.837 0.874 o
Maier-Saupe fit of(y) 0.568 0.708 0762 0775 0.832 FIG. 3. Orientational distribution function§(6) for packing
Gaussian fit ofl () 0.596 0.732 0.779 0.790 0.840 fraction 5=0.2338. The solid line denotes the “exact’” ODF mea-

sured directly in simulation. The “exact” ODF is fitted with the
Maier-Saupe distributiotll), the Onsager distributiof©), and the
that the statepoint corresponding with a packing fraction Gaussian distributioiA). The inset shows the fits divided by the
~0.185 lies in the isotropic-nematic coexistence region. Forexact” ODF.

this statepoint, we observe large fluctuations in the nematic

order parameter during our simulations. Figures 2 and 3ising Eq(1). The values oBare listed in Table | and plotted
show typical examples of the “exact” orientational distribu-in Fig. 4. Figures 2 and 3 and Table | show that at all den-

tion functionf(#). sities the measured orientational distribution function is per-
The measured ODF'’s are fitted with three different trialfectly fitted by the Maier-Saupe distribution for all values of
functions containing one fitting parametey 0 when nematic director fluctuations are ignored. The value
of S calculated with the fitted Maier-Saupe distribution
f1(6) = Ny(a)exp(a co4), (9a) b

matches closely to the one measured as the largest value of
the nematic order parameter teng@y. The fits of the ODF'’s

fo(0) = Nz(a)e'(’zlz"‘z, (9b) using the Onsager and Gaussian distributions are less peaked
then the measured ones, which result in a slightly overesti-

a mated nematic order parameter. However the nematic order
f3(0) = s aCOSf(a cos ), (90)  parameters obtained from the different distributions differ

only by a few percent. Increasing the density, the fits of the
where Ni(e) are the normalization constants, such thatODF's using different trial functions and the resulting values
JT2d6 sin 6f,(6)=1. The first ODF is the Maier-Saupe dis- for Sapproach each other. o
tribution, the second is the Gaussian distribution introduced, e also study the influence of nematic director fluctua-
by Odijk, and the third one was proposed by Onsgggr  tonson the ODF by comparing simulations where zkaxis
The trial function introduced by Oldenbouf#9] is not con- is chosen to be the fixed nematic director with simulations
sidered here as the fitting parameter can be chosen such tw_&iﬂere the nematic director is calculated for each_conflgura-
it coincides with the Maier-Saupe distribution. We determinelion. As expected, we observe that the ODF is slightly

the nematic order paramet&rfrom the three fitted ODF's 06-

[

FIG. 4. The nematic order paramet8ras a function of the
FIG. 2. Orientational distribution function§(#) for packing  packing fraction obtained from different routes: direct measure-
fraction »=0.1846. The solid line denotes the “exact” ODF mea- ment of(6) M-, using a Maier-Saupe fit of the ODA\—, using a
sured directly in simulation. The “exact” ODF is fitted with the Gaussian distribution fit of the ODF\/~, using an Onsager distri-
Maier-Saupe distributioll), the Onsager distributiot¥), and the  bution fit of the ODF <—, using an Onsager distribution fit of the
Gaussian distributioi\). The inset shows the fits divided by the intensity scatter X—, using a Maier-Saupe fit of the intensity scat-
“exact” ODF. ter -
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TABLE Il. The nematic order paramet& of a fluid of hard
spherocylinders with packing fractiop=0.2092 determined di-
rectly in simulations with and without nematic director fluctuations.

Nematic director fluctuations No Yes
“Exact” 0.799 0.785

Maier-Saupe fit of ODF 0.805 0.769
Gaussian fit of ODF 0.822 0.793

broader and gives lower values 8f(see Table )} when we
use thez-axis as the nematic director and, thus, allow for
nematic director fluctuations. These findings are a logical
consequence of the method we used for taking into account
director fluctuations, i.e., via a reference to the fixzeakis.
More surprisingly, we find that the ODF is best fitted by the
Gaussian distribution, when we allow for nematic director
fluctuations, while the one without nematic director fluctua-
tions is best fitted by the Maier-Saupe distribution. The val-
ues ofSare shown in Table Il. In the sequel, we calculate the
actual nematic director for each configuration and ignore
nematic director fluctuations.

We plot the scattered intensityq) in Fig. 5. As the simu-
lated rods do not have any inner structure we do not observe
a diffusive ring at high values of the scattering angle, and the
scattered patterns resemble those obtained from interparticle
scatter in experimentil6]. In experiments, the interparticle
scatter is measured for<Q|g|D<2w. We therefore focus
ourselves to this range in simulations. Moreover, figiD
> 21, the statistical accuracy ¢fd) decreases significantly
as F(d)— 0 and the computational cost in measurir{g)
increases dramatically. Figurgéap showsl(q) for the isotro-
pic phase aty=0.1723. We clearly see thatq) is isotropic
and does only depend dqj. Figures $b)-5d) show the
intensity scatter for the nematic phase at varyinghNe ob-
serve the typical anisotropic pattern of the scattering as also
found experimentally for nematic solutions of the TMV and
fd virus [10,16.

In order to obtain information about the spatial order of
the system, we investigate the intensity scdittgr,q,) along
the equatorgy,=0 andq,=0. We plotl(q,,0)/N, F(q,,0),
andl(0,q,)/N in Fig. 6 for a nematic phase gt=0.2092 and
7=0.2338. The inset showS(q,,0) which is obtained by
dividing the intensity scatter per particle by the formfactor
(3). The intensity atg|=0 is related to the isothermal com-
pressibility xt, i.e., 1(0,0=NkgTx7/V, wherekg is Boltz-
mann’s constant] the temperature, angy=-1/V(dV/JP)
with P the pressure. In the Gaussian approximation, the pres-
sure of the nematic phase readsRes 3NkgT/V, yielding
1(0,00=1/3. Figure 6 shows indeed th&t0,q,) =1/3 for
g,— 0 and thatl(qg,,0)=1/3 for g,— 0. However, it is dif-
ficult to obtain an accurate estimate of the intensity,q,)
for gq,— 0 as the intensity is a rapidly varying function @f
near the origin.

PHYSICAL REVIEW E 70, 011705(2004)
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While the well-pronounced intensity peak as observed in |G, 5. Density plots of the intensity scatiég;,q,) for varying
x-ray diffraction experiments of suspensions of a colloi@hl  packing fractionsi(a) 7=0.1723(isotropio, (b) »=0.1846,(c) 7

virus and TMV[10,16 is missing in our (q), we do clearly

=0.2092,(d) »=0.2338. Bright areas correspond to high and dark

observe a very broad peak in the structure factor, as foundreas correspond to low intensity scatter.
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NECT . corresponding with scattering from a typical distance
T 27/ qg,~ 16D which is associated with the length of the rods.
The appearance of presmectic peaks are in agreement with
theoretical predictions by van der Sch¢21], who observed
that the primary peak diverges at the spinodal instability to
the smectic phase. It is worth noting that the presmectic
peaks are already observed at packing fractions which are a
factor of two smaller than the packing fraction at which the
nematic-smectic phase transition occurs.

The intensity scatter in the direction of a vectpcan be
related to the orientational distribution function. At small ab-
solute values of the scattering angle where the diffraction

FIG. 6. Intensity distribution per particle along tige=0 and  Pattern depends on the structure factor one does not measure
,=0 directions:J 1(q,,0), -l 1(0,q,) for »=0.2092,V 1(g,,0),  the single particle ODF but the coupled fluctuations of adja-
-¥-1(0,q, for »=0.2338, together with the formfactd(q,,0) cent rods. This is expected to result in an overestimation of
(+), which is not significantly distinct for these two packing frac- the order parametgi1,22. At sufficiently high values of the
tions. The inset shows the structure fackg,,0) for the two pack- ~ Scattering vector, it is often assumed that the structure factor
ing fractions approaches unity and the diffraction is determined by the

form factor only. Note, however, that Fig. 6 shows that our
experimentally. The main reason for the absence of the inStructure factor does not approach unity pb < 2. Aver-
tensity peak is that the virus particles used in the experiment39ing over all possible orientations of the rods, we can ap-
carry a surface charge and are dressed with a cloud of cdroximate the scattering intensity to be
and counterions, resulting in a much larger effective diameter

0.3+

q, q)
o
e

0.14

0.0

D; Of the particles compared to the actyatattering di- 1(G) = F(q) ={9(q;»)|? = f dQf(Q)|Ha,(Q),q,(Q))[?,
ameterDg.,: Although the effective length-to-diameter ratio
L/De¢s of the fd or TMV virus is close to our value for the (10

length-to-diameter ratic./D of the simulated rods, the scat- hereQ is th lid | ¢ d with h
tering length-to-diameter ratit /D, is much larger than where(} is the solid anglé ¢, ¢) of a rod with respect to the

L/Dysr. If we use in our simulations of rods with/D=15, ngmatic director #) and azimuthglly with respect tq the in-
the formfactor of infinitely thin rodswhich is of course Cident beam(¢). Due to the axial symmetry relatively to
much broader than the one shown in Fig. 6 for fitiD), ~ nematic directorf(Q) simplifies to f(6). Using the explicit
we obtain an intensity peak similar to the one found in ex-form of the Fourier transforni) this expression can be eas-
periments. The diameteB; and Dg.o in the simulations ily related to the intensity distribution along the equatorial
can be varied such that it matches the experiments. Howeved/C of diffraction pattern,

varying the diameters does not change significantly the nor- 20 w2

malized arc intensity distribution, and we therefore decided ]

to use the same diameters g and Dy, The structure 1(q,9) = J d‘Pf dé(sin 0)f(6)
factor peak is at aboud, D~ 4 corresponding with scatter- 0 0

ing from typical distances2/q, ~1.57D, which can be as-
sociated with the average rod separation in radial direction. J;| =qsin a)
We also observe that the structure factor peak moves to «| i L
higher g, at increasingn as expected. Compared to the lo 2q cosa .
strongly peaked structure factor peak in experiments of the Sasna
colloidal fd virus and TMV, we find a very broad structure
factor peak in our simulations. Again, the discrepancy in thevhereq is the absolute value of the scattering ve@along
sharpness of the structure factor peak can be explained by thiee arc,i is the angle with they,-axis as denoted in Fig. 5,
surface charge of the experimental rods, which increases trend « is defined by cosy=sin ¢ cos 8+cos i sin 6 cos ¢.
effective diameter of the rods considerable compared to th&his formula is difficult to use in the analysis of experimen-
actual scattering diametdd,., in experiments. Moreover, tal data, and instead the expression relatif to f(6) pro-
we expect that the flexibility of théd virus particles broad- posed by Leadbetter is commonly ugdd,14,
ens the structure factor peak compared to the rigid rods used o
in the simulations and counterbalances the effect of charge. It f(6)sin 0

() = f de

2

, (1D

is worth noting that no structure factor peak was found by

van der Schooet al. [20] using infinitely thin rods, i.e.p

=0 and ignoring the cylindrical Bessel function of the first

order in Eq.(7). An explanation is still lacking and it is It does not depend on the absolute value of the scattering

interesting to study this in more detail. vector and is based on several drastic assumptions which are
We also find parallel to the nematic director presmecticdiscussed if14,22. Leadbetter proposed it for the intensity

correlation peaks in the intensity0,q,) at aboutg,D~0.4  distribution along the “wide angle ring” corresponding to the

% . 12
cogyntarté — tarfyy (12
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lateral mean distance between neighboring molecules. An 2, a)
analytical inversion of this formul@l2) was proposed by
Deutsch[13] and reads as

/2

_tany
fww Jtarfy - tarfe’ (13

MO == sin odo

with normalization constarii= [7'2f(#)sin 6d6. This allows
calculating the exact form of ODF from x-ray diffraction
data. However, using scattering data that includes experi-
mental and statistical errors, a numerical inversion of the
integral equation is very inaccurate. Hence, one often em- ~\ b)
ploys a trial function for the ODF with some fitting param- :
eters. If one uses the Maier-Saupe distribution function
f(6) =N(a)exp(a cos6), the scattered intensity is described
by [23,24

exp(a cody) V'

y 2 erf(\ acosy), (14)
0S

1(4) =Ny(a)

with fitting parameter. If we use the Onsager distribution }
function f(6)=a cosia cosh)/sinh «, the integration of -
(12) yields [25]
FIG. 7. Equatorial intensity distribution,|g]) for packing
fractions =0.1846,7=0.2329, dots represent the intensities mea-
sin h {1 + 5 Ly(a cos zﬁ)] (15 sured along several arcs with the absolute value of the scattering
vector between 12<|q|D < 27; solid lines are fits of these inten-

. - . . sities with distributiong14) (thick line) and(15) (thin line), dashed,
whereL,(x) is the modified Struve function of the first order. nd dashed—dotted lines are the intensities obtained from the for-

Unfort.unately, the QaUSSIan for_m for,the ODF dpes not lea ula proposed by the Leadbetter formula using the fits of the “e
to a simple expression for the intensity distribution. act” orientational distribution function with the Onsager and Maler-
A comparison of different distribution functions is gsaype distributions, respectively.
straightforward due to simple normalization rules. The Lead-
better expression provides similar normalization for scattered
intensity; provided that an orientational distribution function determine the nematic order parameter ugiyg The values
is properly normalized we can integrate the intensity alongpf the nematic order parameter obtained from intensity scat-
the arc to Obtainfg/2d¢l(¢)=w/2 which is independent of ter underestimate the “exac’by 2—9%. Although the “ex-
the particular form of the trial ODF. act” ODF is best fitted by the Maier-Saupe distribution, the
We determine the ODF from the intensity distribution Onsager distribution gives a better estimate of the nematic
along the equatorial arc of the x-ray diffraction patterns fororder parameter calculated from intensity scatter as shown in
different absolute values of the scattering vector to checlcigs. 8 and 9. On the other hand, the result of the Leadbetter
how strong it depends gjg|. This can serve as a test of the
applicability of the formula proposed by Leadbetter, Eq.
(12), which is independent ofg|. In Fig. 7, we plot equato-
rial intensity distributions for packing fractiong=0.1846
and 7=0.2338 with 3.%|gD<6.3. We do not observe
strong dependence dq|, which agrees with the assumption
used in the formula proposed by Leadbetter. However, Fig. 6
shows that the structure factor only tends to approach unity
at the highest value df,, i.e.,q,D=2, and the approxima-
tion 1(g) =F(q) is not valid.
We, however, do fit our measured intensities with the in-
tensity distributions using the Maier-Saupe distribut{@#)
and the Onsager distributiol5) and the corresponding
ODF’s are compared with the ones measured directly in F|G. 8. Orientational distribution functions() for packing
simulation in Figs. 8 and 9. Figures 8 and 9 show clearly thatraction »=0.1846. The solid line denotes the “exact’ ODF mea-
the ODF obtained from intensity scatter are less peaked thagured directly in simulation. The intensity scatter is fitted with the
the “exact” ones. Using the ODF’s from intensity scatter, weMaier-Saupe distributiofiO) and the Onsager distributid\).

() =
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the ODF’s obtained from interparticle scattering were com-
pared with the “exact” ones determined directly in simula-
tion in order to study the effect of correlations between the
rods. We find that the values f&determined from interpar-
ticle scattering are smaller than the “exact” ones by about
2—-9% and that the ODF’s are broader than the “real” ones.
We also find that the values f& and the ODF are rather
insensitive to the absolute value of the scattering vector
which agrees well with the assumption proposed by Leadbet-
ter thatl(q, ) along the equatorial arc does is dependent on
%.oo 2 |ﬁ|
6 The length-to-diameter ratio of the rods used in simula-
tion are much smaller than those used in experiments on the
colloidal fd virus and TMV. However, the effective aniso-
tropy can be tuned by the salt concentration such that it
approaches the value used in simulation. It is interesting to
investigate in more detail what the effect of anisotropy is on
the intensity scatter. As already explained above, one expects
formula supplied with the fits using the Onsager and Maierthat the structure factor peak becomes more pronounced
Saupe distribution of the “exact” ODF is compared to theg|ong theg,-direction upon increasing the aspect ratio of the
measured intensities in Fig. 7. Figure 7 shows, that the inrods. When the structure factor peak is sharper, one expects
tenSIty distributions obtained from the f|tS. of the “e.Xa.C-t” that&c‘i) approaches 1 more rap|d|y and that the influence of
ODF is more peaked than the measured intensity distribupe structure factor and correlations become less important in
tions. the determination of the nematic order parameter and the
ODF from intensity scatter. One might also argue that a more
IV. CONCLUSIONS pronounced structure factor peak as expected at higher aspect

The orientational distribution function, the nematic orderratios of the rods may yield a peak in the intensity scatter as

parameter, and the intensity scatter are calculated in Simulg__bserved experimentall}f0,16, but which was never pre-

tions for a system of hard spherocylinders with an aspecglcted theoretically20]. This will be investigated in a future
ratio of 15 for varying densities in the isotropic and nematicwork'
phase. The angular distribution function in the nematic phase
is well described by the Maier-Saupe distribution when nem-
atic director fluctuations are ignored. Including nematic di-
rector fluctuations, the ODF is best fitted by the Gaussian We thank Seth Fraden for stimulating discussions and we
distribution. The Leadbetter approach is found to give a reawish to thank the Dutch National Computer Facilities Foun-
sonable description of the x-ray scattering pattern, evemlation for access to the SGI Origin3800. The High Perfor-
whenS(q) # 1 and thus spatial and orientational correlationsmance Computing group of Utrecht University is gratefully
are present. The values of the nematic order parar8sead  acknowledged for ample computer time.

FIG. 9. Orientational distribution function§(6) for packing
fraction #=0.2338. The solid line denotes the “exact” ODF mea-
sured directly in simulation. The intensity scatter is fitted with the
Maier-Saupe distributioffO) and the Onsager distributidi\).
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