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The determination of the nematic order parameterS and the orientational distribution function(ODF) from
scattering data involve severe approximations. The validity of these are studied here using Monte-Carlo
simulations of hard spherocylinders with an aspect ratio of 15 for varying densities in the isotropic and nematic
phase. The “exact” ODF of the rods, the “exact” value ofS, and the intensity scatterIsqWd are determined
directly in simulation. In addition, we determine the ODF andS from the simulated intensity scatter which
includes spatial and orientational correlations of the particles. We investigate whether correlations present in
the interparticle scatter influences the determination of the single particle orientational distribution function by
comparing the results obtained from scattering with the “exact” results measured directly in our simulations.
We find that the nematic order parameter determined from the intensity scatter underestimates the actual value
by 2–9%. We also find that the values ofS and the ODF are insensitive to the absolute value of the scattering
vector for 1.2p, uqW uD,2p which agrees well with the assumption proposed by Leadbetter thatIsq,cd along
the equatorial arc is independent ofuqW u. We also observe that the best fit of the “exact” ODF is given by the
Maier-Saupe distribution when nematic director fluctuations are ignored, while the Gaussian distributions
provides the best fit when these fluctuations are included.
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I. INTRODUCTION

Liquids consisting of anisotropic molecules exhibit a
number of liquid-crystalline phases, that are intermediate be-
tween the well-ordered crystalline solid and the isotropic
fluid phase[see Fig. 1(a)]. The simplest liquid-crystal phase
is the so-called nematic phase, in which the particles exhibit
long-range orientational order but no translational order[see
Fig. 1(b)]. Extensive theoretical and simulation studies are
performed on hard-rod fluids, which serve as a good model
for rodlike colloidal particles like the inorganic boehmite
rods[1] or the biological TMV andfd virus particles[2]. The
phase behavior of colloidal hard rods starts with the seminal
work of Onsager, who showed that infinitely thin hard rods
exhibit an entropy-driven isotropic-nematic phase transition
at sufficiently high densities[3]. Subsequently, extensive
computer simulation studies showed that also finite hard rods
show a nematic phase[4–7], a smectic phase[4–6,8] and a
columnar phase[5]. More recently, the phase diagram of
hard rods is determined as a function of the aspect ratio and
density of the rods[9].

The focus of this paper is, however, not on the phase
behavior as many previous studies, but on the structure of the
fluid, in particular, the single particle distribution and two-
body distribution functions. The nematic phase is often char-
acterized by the orientational distribution function(ODF)
fsud, which is a single-particle distribution function and de-
scribes the distribution of orientations of the particles about a
preferred direction, i.e., director. The angle between the long
molecular axis and the director is denoted byuP f0,p /2g.
This function plays a key role in understanding the properties
of nematic phases and many theoretical investigations rely
on the explicit functional form of it. The nematic order pa-
rameterS of a system is quantified by

S=E
0

p/2

dussin udP2scosudfsud, s1d

where P2 is the second Legendre polynomial. The orienta-
tional distribution function can be determined experimentally
by various methods; one of them is based on diffraction ex-
periments, which measures the Fourier transform of a two-
body correlation function. It is interesting to investigate how
a single-particle distribution can be obtained from measure-
ments of the two-body correlations. If we considerN identi-
cal particles with orientations given by the unit vectorshv̂j,
and rsrW ; v̂d describes the internal(electron) density of each
individual particle, then the scattered intensity of the total
system is given by

IsqWd =Ko
i=1

N

o
j=1

N E E drWdrWrsrW − rWi ;v̂idrsrW − rW j ;v̂ jd

3expfiqW · srW − rWdgL
=Ko

i=1

N

o
j=1

N

expfiqW · srWi − rW jdgqsqW ;v̂idqs− qW ;v̂ jdL ,

s2d

with qsqW ; v̂id=edrWrsrW ; v̂idexpfiqW ·rWg, the Fourier transform of
the (electron) density distributionrsrW ; v̂id of particle i. Note
thatrsrW ; v̂id depends on the orientation of particlei. The total
scattered intensity can be split into a partFsqWd that depends
on a single-particle distribution function and a second part
SsqWd that includes the spatial and orientational correlations,

IsqWd = NFsqWdSsqWd. s3d

The intraparticle scatter or form factorFsqWd is given by
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FsqWd = kuqsqW ;v̂du2l, s4d

and the angular brackets denote an average over all the par-
ticles with their orientations given by the unit vectorshv̂j.
The interparticle scatter or structure factor termSsqWd reads
[10] as

SsqWd = 1 +
1

NFsqWdKo
iÞ j

N

expfiqW · srWi − rW jdgqsqW ;v̂idqs− qW ;v̂ jdL .

s5d

The structure factor depends on the positions of the rods and
their relative orientations. For spherical symmetric particles,
the (electron) density distributionrsrW ; v̂d is independent of
the orientation of the particle, andqsqW ; v̂id=qsqW ; v̂ jd. The
structure factor is then decoupled from the form factor. How-
ever, for anisotropic density distributions,qsqW ; v̂id
ÞqsqW ; v̂ jd and the structure factor is not decoupled from the

form factor, hence, the structure factor includes spatial and
orientational correlations. In the isotropic and nematic phase,
it is often assumed thatSsqWd→1 at a high angle and the
intensity depends only on the form factor, i.e.,IsqWd=FsqWd. If
the intensity can be measured at a high angle, the orienta-
tional distribution function can be obtained directly from the
intensity. At low angle, i.e.,uqW uD,2p, the scattering inten-
sity depends onSsqWd which includes angular and spatial cor-
relations between neighboring rods. In our simulations, we
observe thatSsqWdÞ1 for uqW uD,2p and it is interesting to
investigate the validity and consequences of the assumption
IsqWd.FsqWd that is often employed experimentally in the de-
termination ofS and the ODF from intensity scatter. Lead-
better[11,12] showed that the intensity distribution along the
equatorial arc, thus at fixeduqW u, can be related to the ODF of
the sample. The integral equation relating these two quanti-
ties was inverted by Deutsch[13]. However, using scattering
data that includes experimental errors, a numerical inversion
of the integral equation is very inaccurate. Therefore, one
often assumes an analytical form of the ODF with some fit-
ting parameters which are chosen such that it provides the
best fit of the measured intensity distribution[14–16]. The
resulting ODF and the nematic order parameter derived from
the ODF may depend sensitively on the precise trial function
of the ODF. The validity of these approaches to measure the
nematic order and ODF in scattering experiments was stud-
ied by Purdyet al. [16] by comparing the nematic order
parameter obtained from low angle scattering experiments
(which include spatial and orientational correlations) with
high angle scattering experiments(which depends only on
the single-particle ODF). However, both approaches to ob-
tain the nematic order parameter from low and high angle
scattering involve approximations and are based on trial
functions.

In this paper we test the validity of these approaches by
determining the “exact” orientational distribution function of
the rods, the “exact” nematic order parameter, and the inten-
sity scatter directly in simulation. We compare the orienta-
tional distribution function and nematic order parameter ob-
tained from the simulated intensity scatter using several trial
functions with the “exact” results measured directly in our
simulations.

The paper is organized as follows: In Sec. II we describe
the simulations, in Sec. III we present the results, and the
conclusions are drawn in Sec. IV.

II. SIMULATIONS

Extensive simulation studies are performed to determine
the phase behavior of fluids consisting of hard spherocylin-
ders [4–6,8,9]. The focus of this paper is, however, not on
the phase behavior, but on the structure of the fluid, in par-
ticular, the single-particle distribution and two-body distribu-
tion functions. The “exact” orientational distribution function
of the rods, the “exact” nematic order parameter, and the
intensity scatter are determined directly in simulation. We
study a system of hard spherocylinders in a cubic box with
periodic boundary conditions. Each rod consists of a cylin-
drical part with diameterD and lengthL=15D and of spheri-

FIG. 1. Snapshot of a fluid of hard spherocylinders for packing
fraction. (a) h=0.1723(isotropic phase); and (b) h=0.2338(nem-
atic phase).
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cal caps at both ends with diameterD. We present Monte-
Carlo simulations in the canonical ensemble, so we fix the
number of particles atN=1000, and the volumeV of the
system. We perform simulations at varying packing fractions
h=psD3/6+D2L /4dN/V in the isotropic and nematic phase.
In Fig. 1, we present snapshots of the isotropic and nematic
phase at packing fractionsh=0.1723 and 0.2338, respec-
tively. The packing fractions of the coexisting isotropic and
nematic phases are predicted to behI =0.1777 andhN
=0.2058, while the packing fraction of the nematic-smectic
transition is at abouthSm.0.4438[9].

The simulations are started from an initial condition in
which the orientations of the rods are randomly distributed in
a cone with 0øuø0.15p, whereu is the angle between the
z-axis and the orientation of the rod. The deviations of the
nematic director from the initial direction, which is along the
z-axis, are often assumed to be small[17]. However, we find
that during our simulations the director fluctuations have a
significant impact on the value of the order parameter and
moreover on the best fitting distribution of the ODF. We
therefore determine for each configuration the actual nematic
director and we determine the ODF and the nematic order
parameter with respect to the present director. In this way we
ignore the fluctuations of the nematic director, which can be
achieved experimentally by switching on a magnetic field
that fixes the nematic director of the sample. The current
nematic director and the nematic order parameter are deter-
mined from the standard 333 nematic order parameter ten-
sor defined as[18]

Qab =
1

N
o
i=1

N
3ua

i ub
i − dab

2
, s6d

whereua
i is thea-component of the unit orientation vector of

particle i, anddab is the Kronecker delta. The nematic order
parameter is given by the largest eigenvalue of this tensor
and the corresponding eigenvector is the nematic director of
the sample.

We check for equilibration by monitoring the nematic or-
der parameter of the system. The maximum allowed values
for displacement and rotational moves are chosen such that
the product of the acceptance ratio and maximum displace-
ment is maximum which corresponds with an acceptance
ratio of about 25–30%. When equilibrium is reached, we
perform a production run of 1.53106 sweeps(one displace-
ment attempt per particle), while sampling is performed once
every sweep. The quantities that are sampled are the nematic
order parameter, the orientation distribution functionfsud,
which is proportional to the probability to find a rod with an
angle withinfu ,u+dug relative to the nematic director, and
the scattered intensityIsqWd given by Eq.(3). It is convenient
to write the reciprocal vector in cylindrical coordinatesqW
=sqr ,qz,qfd. If the system possesses uniaxial symmetry rela-
tive to the nematic director lying along thez-axis, the scat-
tered intensity depends only onr and z coordinates, and is
independent off.

The Fourier transform of the(electron) density of a
spherocylinderqsqW ; v̂d can be approximated by the Fourier
transform of only the cylindrical part of lengthL and diam-

eterD as the contribution from the caps is negligible for the
given length-to-diameter ratio,

qsqW ;v̂d , j0SL

2
qzDJ1SD

2
qrD

D

2
qr

, s7d

where j0sxd is the spherical Bessel function of the zeroth
order, andJ1sxd is the cylindrical Bessel function of the first
order. Note that in Eq.(7) the polar axis of the coordinate
system is defined alongv̂, which can easily be transformed
to the coordinate system where the polar axis coincides with
the direction of scattering vectorqW. For infinitely thin rods,
the Fourier transform is defined byj0sxd only and J1sxd /x
allows for a finite diameter of the rods. The averaged square
kuqsqW ; v̂du2l of this property is the formfactorFsqWd of the
system that contains information about the shape, the inner
structure of the molecule, and the ODF. The structure factor
SsqWd of the system contains information about the positional
and orientational correlations between the scattering par-
ticles. Equation(3) with (4) and (5), however, is not conve-
nient for sampling the scattered intensity in simulations as it
contains a double summation, and the differencerWi −rW j in the
exponent requires paying attention to the periodic boundary
conditions. Using simple algebra the scattered intensity can
be written as

IsqWd = So
i=1

N

cossqW · rWidqsqW ;v̂idD2

+ So
i=1

N

sinsqW · rWidqsqW ;v̂idD2

,

s8d

which does not contain double summation and allows for
twice the higher resolution as the smallest nonzeroqmin is
given by qmin=2p /Li due to periodic boundary conditions
compared to Eq.(3) whereqmin=4p /Li with Li the dimen-
sion of the box in thei-th direction [due to the difference
rWi −rW j in Eq. (5)].

III. RESULTS AND DISCUSSION

As we wish to investigate whether correlations present in
the interparticle scatter influences the determination of the
ODF and S from intensity scatter, we first determine the
“exact” value ofS and the “exact” ODF of the rods directly
in simulation. We perform simulations at varying packing
fractionsh in the isotropic and nematic phase. We measureS
from Eq. (6), the ODFfsud, and the scattered intensityIsqWd.
The latter two are both measured from simulations(i) where
thez-axis is taken to be the fixed nematic director, i.e., nem-
atic director fluctuations are included and(ii ) where for each
configuration the present nematic director is calculated such
that nematic director fluctuations are disregarded. The latter
can be achieved experimentally by applying a magnetic field
that fixes the nematic director of the sample. We present
results for the case that nematic director fluctuations are dis-
regarded, unless stated differently. Table I showsSas a func-
tion of h for the statepoints we considered in this study. Note
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that the statepoint corresponding with a packing fractionh
<0.185 lies in the isotropic-nematic coexistence region. For
this statepoint, we observe large fluctuations in the nematic
order parameter during our simulations. Figures 2 and 3
show typical examples of the “exact” orientational distribu-
tion function fsud.

The measured ODF’s are fitted with three different trial
functions containing one fitting parametera,

f1sud = N1sadexpsa cos2ud, s9ad

f2sud = N2sade−u2/2a2
, s9bd

f3sud =
a

sinh a
coshsa cosud, s9cd

where Nisad are the normalization constants, such that
e0

p/2du sin uf isud=1. The first ODF is the Maier-Saupe dis-
tribution, the second is the Gaussian distribution introduced
by Odijk, and the third one was proposed by Onsager[3].
The trial function introduced by Oldenbourg[19] is not con-
sidered here as the fitting parameter can be chosen such that
it coincides with the Maier-Saupe distribution. We determine
the nematic order parameterS from the three fitted ODF’s

using Eq.(1). The values ofSare listed in Table I and plotted
in Fig. 4. Figures 2 and 3 and Table I show that at all den-
sities the measured orientational distribution function is per-
fectly fitted by the Maier-Saupe distribution for all values of
u when nematic director fluctuations are ignored. The value
of S calculated with the fitted Maier-Saupe distribution
matches closely to the one measured as the largest value of
the nematic order parameter tensor(6). The fits of the ODF’s
using the Onsager and Gaussian distributions are less peaked
then the measured ones, which result in a slightly overesti-
mated nematic order parameter. However the nematic order
parameters obtained from the different distributions differ
only by a few percent. Increasing the density, the fits of the
ODF’s using different trial functions and the resulting values
for S approach each other.

We also study the influence of nematic director fluctua-
tions on the ODF by comparing simulations where thez-axis
is chosen to be the fixed nematic director with simulations
where the nematic director is calculated for each configura-
tion. As expected, we observe that the ODF is slightly

FIG. 3. Orientational distribution functionsfsud for packing
fraction h=0.2338. The solid line denotes the “exact” ODF mea-
sured directly in simulation. The “exact” ODF is fitted with the
Maier-Saupe distributionsjd, the Onsager distributionssd, and the
Gaussian distributionsnd. The inset shows the fits divided by the
“exact” ODF.

FIG. 4. The nematic order parameterS as a function of the
packing fractionh obtained from different routes: direct measure-
ment of(6) –j–, using a Maier-Saupe fit of the ODF –n–, using a
Gaussian distribution fit of the ODF –,–, using an Onsager distri-
bution fit of the ODF –+–, using an Onsager distribution fit of the
intensity scatter –3–, using a Maier-Saupe fit of the intensity scat-
ter –h–.

TABLE I. The nematic order parameterS of a fluid of hard
spherocylinders for different packing fractionsh determined di-
rectly in simulations(“exact”), determined from a fit of the “exact”
orientational distribution function, and determined from a fit of the
scattering intensityIscd.

h 0.1846 0.1969 0.2092 0.2215 0.2338

“Exact” 0.627 0.747 0.799 0.825 0.861

Maier-Saupe fit of ODF 0.631 0.754 0.805 0.824 0.866

Onsager fit of ODF 0.674 0.777 0.819 0.835 0.872

Gaussian fit of ODF 0.683 0.781 0.822 0.837 0.874

Maier-Saupe fit ofIscd 0.568 0.708 0.762 0.775 0.832

Gaussian fit ofIscd 0.596 0.732 0.779 0.790 0.840

FIG. 2. Orientational distribution functionsfsud for packing
fraction h=0.1846. The solid line denotes the “exact” ODF mea-
sured directly in simulation. The “exact” ODF is fitted with the
Maier-Saupe distributionsjd, the Onsager distributions+d, and the
Gaussian distributionsnd. The inset shows the fits divided by the
“exact” ODF.
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broader and gives lower values ofS (see Table II) when we
use thez-axis as the nematic director and, thus, allow for
nematic director fluctuations. These findings are a logical
consequence of the method we used for taking into account
director fluctuations, i.e., via a reference to the fixedz-axis.
More surprisingly, we find that the ODF is best fitted by the
Gaussian distribution, when we allow for nematic director
fluctuations, while the one without nematic director fluctua-
tions is best fitted by the Maier-Saupe distribution. The val-
ues ofSare shown in Table II. In the sequel, we calculate the
actual nematic director for each configuration and ignore
nematic director fluctuations.

We plot the scattered intensityIsqWd in Fig. 5. As the simu-
lated rods do not have any inner structure we do not observe
a diffusive ring at high values of the scattering angle, and the
scattered patterns resemble those obtained from interparticle
scatter in experiments[16]. In experiments, the interparticle
scatter is measured for 0ø uqW uDø2p. We therefore focus
ourselves to this range in simulations. Moreover, foruqW uD
@2p, the statistical accuracy ofIsqWd decreases significantly
as FsqWd→0 and the computational cost in measuringIsqWd
increases dramatically. Figure 5(a) showsIsqWd for the isotro-
pic phase ath=0.1723. We clearly see thatIsqWd is isotropic
and does only depend onuqW u. Figures 5(b)–5(d) show the
intensity scatter for the nematic phase at varyingh. We ob-
serve the typical anisotropic pattern of the scattering as also
found experimentally for nematic solutions of the TMV and
fd virus [10,16].

In order to obtain information about the spatial order of
the system, we investigate the intensity scatterIsqr ,qzd along
the equatorsqz=0 and qr =0. We plot Isqr ,0d /N, Fsqr ,0d,
andIs0,qzd /N in Fig. 6 for a nematic phase ath=0.2092 and
h=0.2338. The inset showsSsqr ,0d which is obtained by
dividing the intensity scatter per particle by the formfactor
(3). The intensity atuqW u=0 is related to the isothermal com-
pressibility xT, i.e., Is0,0d=NkBTxT/V, wherekB is Boltz-
mann’s constant,T the temperature, andxT=−1/Vs]V/]Pd
with P the pressure. In the Gaussian approximation, the pres-
sure of the nematic phase reads asP.3NkBT/V, yielding
Is0,0d.1/3. Figure 6 shows indeed thatIs0,qzd.1/3 for
qz→0 and thatIsqr ,0d.1/3 for qr →0. However, it is dif-
ficult to obtain an accurate estimate of the intensityIs0,qzd
for qz→0 as the intensity is a rapidly varying function ofqz
near the origin.

While the well-pronounced intensity peak as observed in
x-ray diffraction experiments of suspensions of a colloidalfd
virus and TMV[10,16] is missing in ourIsqWd, we do clearly
observe a very broad peak in the structure factor, as found

FIG. 5. Density plots of the intensity scatterIsqr ,qzd for varying
packing fractions:(a) h=0.1723(isotropic), (b) h=0.1846,(c) h
=0.2092,(d) h=0.2338. Bright areas correspond to high and dark
areas correspond to low intensity scatter.

TABLE II. The nematic order parameterS of a fluid of hard
spherocylinders with packing fractionh=0.2092 determined di-
rectly in simulations with and without nematic director fluctuations.

Nematic director fluctuations No Yes

“Exact” 0.799 0.785

Maier-Saupe fit of ODF 0.805 0.769

Gaussian fit of ODF 0.822 0.793
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experimentally. The main reason for the absence of the in-
tensity peak is that the virus particles used in the experiments
carry a surface charge and are dressed with a cloud of co-
and counterions, resulting in a much larger effective diameter
Def f of the particles compared to the actual(scattering) di-
ameterDscat. Although the effective length-to-diameter ratio
L /Def f of the fd or TMV virus is close to our value for the
length-to-diameter ratioL /D of the simulated rods, the scat-
tering length-to-diameter ratioL /Dscat is much larger than
L /Def f. If we use in our simulations of rods withL /D=15,
the formfactor of infinitely thin rods(which is of course
much broader than the one shown in Fig. 6 for finiteL /D),
we obtain an intensity peak similar to the one found in ex-
periments. The diametersDef f and Dscat in the simulations
can be varied such that it matches the experiments. However,
varying the diameters does not change significantly the nor-
malized arc intensity distribution, and we therefore decided
to use the same diameters forDef f and Dscat. The structure
factor peak is at aboutqr D,4 corresponding with scatter-
ing from typical distances 2p /qr ,1.57D, which can be as-
sociated with the average rod separation in radial direction.
We also observe that the structure factor peak moves to
higher qr at increasingh as expected. Compared to the
strongly peaked structure factor peak in experiments of the
colloidal fd virus and TMV, we find a very broad structure
factor peak in our simulations. Again, the discrepancy in the
sharpness of the structure factor peak can be explained by the
surface charge of the experimental rods, which increases the
effective diameter of the rods considerable compared to the
actual scattering diameterDscat in experiments. Moreover,
we expect that the flexibility of thefd virus particles broad-
ens the structure factor peak compared to the rigid rods used
in the simulations and counterbalances the effect of charge. It
is worth noting that no structure factor peak was found by
van der Schootet al. [20] using infinitely thin rods, i.e.,D
=0 and ignoring the cylindrical Bessel function of the first
order in Eq. (7). An explanation is still lacking and it is
interesting to study this in more detail.

We also find parallel to the nematic director presmectic
correlation peaks in the intensityIs0,qzd at aboutqzD,0.4

corresponding with scattering from a typical distance
2p /qz,16D which is associated with the length of the rods.
The appearance of presmectic peaks are in agreement with
theoretical predictions by van der Schoot[21], who observed
that the primary peak diverges at the spinodal instability to
the smectic phase. It is worth noting that the presmectic
peaks are already observed at packing fractions which are a
factor of two smaller than the packing fraction at which the
nematic-smectic phase transition occurs.

The intensity scatter in the direction of a vectorqW can be
related to the orientational distribution function. At small ab-
solute values of the scattering angle where the diffraction
pattern depends on the structure factor one does not measure
the single particle ODF but the coupled fluctuations of adja-
cent rods. This is expected to result in an overestimation of
the order parameter[11,22]. At sufficiently high values of the
scattering vector, it is often assumed that the structure factor
approaches unity and the diffraction is determined by the
form factor only. Note, however, that Fig. 6 shows that our
structure factor does not approach unity forqrD,2p. Aver-
aging over all possible orientations of the rods, we can ap-
proximate the scattering intensity to be

IsqWd . FsqWd = kuqsqW ;v̂du2l =E dVfsVduq„qrsVd,qzsVd…u2,

s10d

whereV is the solid anglesu ,wd of a rod with respect to the
nematic directorsud and azimuthally with respect to the in-
cident beamswd. Due to the axial symmetry relatively to
nematic directorfsVd simplifies to fsud. Using the explicit
form of the Fourier transform(7) this expression can be eas-
ily related to the intensity distribution along the equatorial
arc of diffraction pattern,

Isq,cd =E
0

2p

dwE
0

p/2

dussin udfsud

33 j0SL

2
q cosaDJ1SD

2
q sin aD

D

2
q sin a 4

2

, s11d

whereq is the absolute value of the scattering vectorqW along
the arc,c is the angle with theqr-axis as denoted in Fig. 5,
and a is defined by cosa=sin c cosu+cosc sin u cosw.
This formula is difficult to use in the analysis of experimen-
tal data, and instead the expression relatingIscd to fsud pro-
posed by Leadbetter is commonly used[11,14],

Iscd = E
c

p/2

du
fsudsin u

cos2cÎtan2u − tan2c
. s12d

It does not depend on the absolute value of the scattering
vector and is based on several drastic assumptions which are
discussed in[14,22]. Leadbetter proposed it for the intensity
distribution along the “wide angle ring” corresponding to the

FIG. 6. Intensity distribution per particle along theqr =0 and
qz=0 directions:h Isqr ,0d, –j– Is0,qzd for h=0.2092,, Isqr ,0d,
–.– Is0,qzd for h=0.2338, together with the formfactorFsqr ,0d
s+d, which is not significantly distinct for these two packing frac-
tions. The inset shows the structure factorSsqr ,0d for the two pack-
ing fractions
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lateral mean distance between neighboring molecules. An
analytical inversion of this formula(12) was proposed by
Deutsch[13] and reads as

fsud = −
1

N sin u

d

du
E
u

p/2

dcIscd
tan c

Îtan2c − tan2u
, s13d

with normalization constantN=e0
p/2fsudsin udu. This allows

calculating the exact form of ODF from x-ray diffraction
data. However, using scattering data that includes experi-
mental and statistical errors, a numerical inversion of the
integral equation is very inaccurate. Hence, one often em-
ploys a trial function for the ODF with some fitting param-
eters. If one uses the Maier-Saupe distribution function
fsud=Nsadexpsa cos2ud, the scattered intensity is described
by [23,24]

Iscd = N1sad
expsa cos2cd

Îacosc

Îp

2
erfsÎacoscd, s14d

with fitting parametera. If we use the Onsager distribution
function fsud=a coshsa cosud /sinh a, the integration of
(12) yields [25]

Iscd =
a

sinh a
F1 +

p

2
L1sa coscdG , s15d

whereL1sxd is the modified Struve function of the first order.
Unfortunately, the Gaussian form for the ODF does not lead
to a simple expression for the intensity distribution.

A comparison of different distribution functions is
straightforward due to simple normalization rules. The Lead-
better expression provides similar normalization for scattered
intensity; provided that an orientational distribution function
is properly normalized we can integrate the intensity along
the arc to obtaine0

p/2dwIswd=p /2 which is independent of
the particular form of the trial ODF.

We determine the ODF from the intensity distribution
along the equatorial arc of the x-ray diffraction patterns for
different absolute values of the scattering vector to check
how strong it depends onuqW u. This can serve as a test of the
applicability of the formula proposed by Leadbetter, Eq.
(12), which is independent onuqW u. In Fig. 7, we plot equato-
rial intensity distributions for packing fractionsh=0.1846
and h=0.2338 with 3.7, uqW uD,6.3. We do not observe
strong dependence onuqW u, which agrees with the assumption
used in the formula proposed by Leadbetter. However, Fig. 6
shows that the structure factor only tends to approach unity
at the highest value ofqr, i.e., qrD=2p, and the approxima-
tion IsqWd.FsqWd is not valid.

We, however, do fit our measured intensities with the in-
tensity distributions using the Maier-Saupe distribution(14)
and the Onsager distribution(15) and the corresponding
ODF’s are compared with the ones measured directly in
simulation in Figs. 8 and 9. Figures 8 and 9 show clearly that
the ODF obtained from intensity scatter are less peaked than
the “exact” ones. Using the ODF’s from intensity scatter, we

determine the nematic order parameter using(1). The values
of the nematic order parameter obtained from intensity scat-
ter underestimate the “exact”S by 2–9%. Although the “ex-
act” ODF is best fitted by the Maier-Saupe distribution, the
Onsager distribution gives a better estimate of the nematic
order parameter calculated from intensity scatter as shown in
Figs. 8 and 9. On the other hand, the result of the Leadbetter

FIG. 7. Equatorial intensity distributionsIsc , uqW ud for packing
fractionsh=0.1846,h=0.2329, dots represent the intensities mea-
sured along several arcs with the absolute value of the scattering
vector between 1.2p, uquD,2p; solid lines are fits of these inten-
sities with distributions(14) (thick line) and(15) (thin line), dashed,
and dashed–dotted lines are the intensities obtained from the for-
mula proposed by the Leadbetter formula using the fits of the “ex-
act” orientational distribution function with the Onsager and Maier-
Saupe distributions, respectively.

FIG. 8. Orientational distribution functionsfsud for packing
fraction h=0.1846. The solid line denotes the “exact” ODF mea-
sured directly in simulation. The intensity scatter is fitted with the
Maier-Saupe distributionssd and the Onsager distributionsnd.
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formula supplied with the fits using the Onsager and Maier-
Saupe distribution of the “exact” ODF is compared to the
measured intensities in Fig. 7. Figure 7 shows, that the in-
tensity distributions obtained from the fits of the “exact”
ODF is more peaked than the measured intensity distribu-
tions.

IV. CONCLUSIONS

The orientational distribution function, the nematic order
parameter, and the intensity scatter are calculated in simula-
tions for a system of hard spherocylinders with an aspect
ratio of 15 for varying densities in the isotropic and nematic
phase. The angular distribution function in the nematic phase
is well described by the Maier-Saupe distribution when nem-
atic director fluctuations are ignored. Including nematic di-
rector fluctuations, the ODF is best fitted by the Gaussian
distribution. The Leadbetter approach is found to give a rea-
sonable description of the x-ray scattering pattern, even
whenSsqWdÞ1 and thus spatial and orientational correlations
are present. The values of the nematic order parameterSand

the ODF’s obtained from interparticle scattering were com-
pared with the “exact” ones determined directly in simula-
tion in order to study the effect of correlations between the
rods. We find that the values forS determined from interpar-
ticle scattering are smaller than the “exact” ones by about
2–9% and that the ODF’s are broader than the “real” ones.
We also find that the values forS and the ODF are rather
insensitive to the absolute value of the scattering vector
which agrees well with the assumption proposed by Leadbet-
ter thatIsq,cd along the equatorial arc does is dependent on
uqW u.

The length-to-diameter ratio of the rods used in simula-
tion are much smaller than those used in experiments on the
colloidal fd virus and TMV. However, the effective aniso-
tropy can be tuned by the salt concentration such that it
approaches the value used in simulation. It is interesting to
investigate in more detail what the effect of anisotropy is on
the intensity scatter. As already explained above, one expects
that the structure factor peak becomes more pronounced
along theqr-direction upon increasing the aspect ratio of the
rods. When the structure factor peak is sharper, one expects
thatSsqWd approaches 1 more rapidly and that the influence of
the structure factor and correlations become less important in
the determination of the nematic order parameter and the
ODF from intensity scatter. One might also argue that a more
pronounced structure factor peak as expected at higher aspect
ratios of the rods may yield a peak in the intensity scatter as
observed experimentally[10,16], but which was never pre-
dicted theoretically[20]. This will be investigated in a future
work.
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